ON THE ARRANGEMENT OF THE FAMILIES OF COLEOPTERA.

By G. R. Crotch, M. A.

(Read before the American Philosophical Society, February 7, 18i3.)
Since the publications of Dr. Leconte and C. G. Thomson, the classification of the order Coleoptera has been placed on quite a new footing, and though the old divisions are in great part retained, yet they are defined by entirely fresh characters and are purged of various heterogeneous elements that had been added to them. Thomson has, indeed, developed a singular classification, differing very widely from any in use, hence I have only been able to avail myself of the details; and certainly no other author has shown such minuteness of observation, thongh unfortunately he has confined himself entirely to the Swedish fama. It is, however, to Dr. Leconte that we owe the most brilliant and fundamental generalization, namely, his isolation of the Rhynchophora by the structure of the prosternum ; the remaining groups can then be worked out with comparative ease, though the three divisions into which they naturally fall do not admit of being sharply and definitely characterized. Hence I propose to divide the Coleoptera, as follows :
A. Anterior coxal cavities closed by the junction of the epimera, elytral epipleure obsolete, head more or less rostral, tarsi 5 jointed, 3d bilobed, fourth minute....... Rhynchophora.
B. Anterior coxie open, or closed by the epimera meeting the prosternum, epipleuree generally distinct..... Coleoptera genuina.

The only apparent exceptions to this division, are the genus Cossyphus pointed out by Dr. Horn, and some of the Colydieder, as Bothrideres and Deretuphrus, but none of these have the characteristic tarsi ; I know of nothing in the Tetramerous series approaching such a structure. The Coleoptera genuinu may be thus divided :
A. Tarsi 5, 5, 4; antennæ moniliform, filiform, or serrate, not clavate.

Heteromera.
B. Tarsi variable, normally $5,5,5$, antennæ variable.

Isomera.
The only character to be relied on here is the tarsal joints ; and undoubted Heteromerous genera occur in the lsomer especially in the Clavicornes, as Liodes, etc. The antemne are clavate in Peritaphyllus, Paratenetus, and some others; Tetrutoma also has them strongly clavate and is probably a Clevicorn.

Isomera.

A. Tarsi'with the $3 d$ joint bilobed, or bifid, 4th very minute connate with the last, antenne moniliform or filiform.
B. Tarsi variable, generally filiform and simple..... Pentamera.

The characteristic Tetramerous tarsi recur in Erotylidæ, but are accompanied by a well marked antennal club, and securiform palpi; in

Dacne also this structure goes gradually out. It may be noticed also that the tarsal characters are constant in Rhynehophora, Tetramerca, and Heteromera, all the variations by a diminished number of joints belonging to the sub-series Clavicornes.

Pentamera.

A. Ventral segments $6,1-3$ comnate, 1 st visible only at the sides.

Adephaga.
B. 1st ventral segment visible in the middle.
a. Antemne clavate, anterior coxal cavities variable

Clavicornes.
b. Antemme lamellate, cavities closed. Lamellicornes.
c. Antemne serrate or filiform, cavities open

Servicornes.
The natural arrangement would be Lamellicornes, Clavicornes, Adephaga, Serricornes.

These groups are fairly exact; the difficulty lies between Cluvicornes and Serricomes, and no clearly dividing line has yet been expressed. I think, however, that the antenne afford a moderately good character ; thus the clavate members of Anobitdce and Cleride cannot be referred to Claviconnes as some of their closest allies are obviously pectinate, but Cis and Bitoma [Lyctus] seem to me undoubted Clavicornes.

Adephaga.

A. Eyes 2, antenna filiform.
B. Posterior coxre separate, anterior coxal cavities closed (except in Trachypachys and Carabini).
C. Antennie inserted on the front......... Cicindelida.

Ca. Antennae inserted under the front............ Carabida.
Ba. Posterior coxæ contiguous.
C. Antcrior coxal cavities closed, posterior coxæ
not reaching the margin Pseudomorphidis.

Ca. Cavities open, coxæ reaching the margin.
D. Posterior coxæ large transversc............ Amphizoidx.

Da. Posterior coxa very large rounded.
E. Posterior coxa forming a plate covering the abdomen.

Haliplida.
Ea. Posterior coxæ connate with the small metasternum

Dytiscide.
Aa. Eyes two, feebly granulated, sometimes want-
ing ; antennæ moniliform.
Postcrior coxæ small, sub-triangular, prominent, distant

Rhyssodide.
Ab. Eyes four, antemne short, stont. Anterior coxæ globular. Gyrinide.
Whether the first six families would not properly be considered subfamilies of Adephaga, is to me doubtful ; the dividing lines break down at many points, e. g., Eluphrus is practically a Cicindelid, and Pelobius is
a natatorial Amphizoid. This latter is in fact most anomalous; the suture of the $2 d$ ventral segment is obliterated in the middle so that it appears to be visible at the sides only; the posterior coxe are quite, as in Amphizor, without any trace of the large plates of the Dytiscide, the metasternum also has the transverse suture behind which is always visible in Curabide, never in Dytiscidu. It will have either to be made into yet another family or will merge the others into one large family modified for terrestrial and aquatic life.

Rhyssodide.
Anterior coxa small, globnlar, prominent, cavities closed.
Posterior coxæ small, sub-triangular, prominent, separate.
Ventral segments 6,1 st visible at the side and in the middlle, :- 4 connate. Tarsi 5 -jointed, simple.
This anomalous family must be ranged in the Adelphagons series as here defined, from all members of which it is at once known by the curious posterior coxe. The antenne are moniliform and resemble those of Scaritidæ, to which group it is evidently allied, thotigh it cannot be denied that it has strong apparent affinities with Cucujide. These, however, are not stronger than its analaogy to Brenthus and depend on a similar mode of life. The $2 d$ ventral segment (the first is obsolete) visible at the sides and middle only, and the distinct side pieces of the thorax are characters possessed by no other Coleopterous insect out of this series. It may here be noticed that the $2 d$ ventral segment in Corubidue is often visible in the middle at the point of the ventral process, especially in Brachynus.

Claticornes. Latr.
This large and somewhat heterogencous group is principally characterized by the clavate or capitate antemæ; very few species being moniliform (Cucujus, Rhyssodes) and some filiform (Staphylinidce). The form of the anterior coxe will divide them into groups, according as they are conical and prominent, transverse, or small and globose; the cavities are variable, but open in the major part of the series, closed eutirely in the following families, Rhyssodidu, Latridiadue, Cioidre, Rhizoplugidd, Derodontide, and in almost all the genera of Coccinellitce, Colydiida, Erotylidd. The antennæ never show signs of being serrate, which removes the Cleride and Anobiide from the group, though some of their genera have distinctly clubbed antenne. The number of tarsal joints is also very variable (but all with filiform tarsi $4,4,4$, and any with a less number of joints belong here), the claws are simple except in Coccinellidie, Phatacridee and some Nitidulide. The accompanying table will serve to differentiate the families, and a few exceptional cases are noticed in the diagnoses of the families. This table though considerably modified, is entirely based on the admirable one given by Leconte in his classification.

Clavicornes.

1. Lalial palpi distant at luse, anterior coxæ prominent, often contiguous, claws generally dentate.......... Antennie 6-9 jointed.

- Labial palpi approximate at base. 3

2. Maxillary palpi elongate ; sub-aquatic Hydrophilide.

- Anterior angles of thorax produced under the head in front Leptinide.

3. Anterior coxa conical, prominent, contiguous, cavities generally open. Claws simple, rentral segments 6-7 (rarely 5)....... 4

- Anterior coxæ orate or globose, not prominent, very rarely contiguous, ventral segments $\overline{5}$, claws simple. 13
- Anterior coxæ transverse, separated, claws sometimes dentate, \sim ventral segments often commate. 24

4. Tentral segments 3 , globose Microsporide.Ventral segments, $5-6$(i
Ventral segments, 7 5
5. Elytra covering or nearly covering the abdomen. Trichopterygide.
Elytra short, dorsal segmeuts corneous. Staphylinidu.
6. Elytra short, dorsal segments corneous, rigid. Pelaphide.
Elytra long, 2 or 3 dorsal segments at most corneous. $\%$
7. Posterior coxie contiguous. s
Posterior coxre separate. 9
8. Middle coxie oblique, simple Sülphida.
Middle coxit conical prominent. Brathinida.
9. Tarsi 4-jointed, $3 d$ joint minute 10
Tarsi 4-jointed, filiform. Iritomidu.
Tarsi 5-jointed 11
10. Wings fimbriate, size very small. Corylophide.
1st ventral segment elongate Endomychide.
11. Hind coxæ flat. 12
Hind coxæ sulcate, sub-contiguous Dermestidu.
12. Elytra cntire, eyes coarsely granulate. Scydmuride.
Elytra truncate, 3 dorsal segments corneous Scuphidiöde.
13.

13, Hind coxæ sulcate, front with an ocellus Dermestider.
Hind coxse sulcate, front cavities closed. Derodontidit
Hind coxae flat or sub-prominent. 14
14. Ventral segments free. 1.5
Tentral segments $1-3$ comnate 29
15. 'Tarsi 3 -jointed, anterior cavities closed. Latridiide.
Tarsi 4-jointed 16
Tarsi 5-jointed or 5, 5, 4 1%
16. Tarsi filiform, cavities open, ventral segments equal Tritomide.

- Tarsi simple, cavities closed, 1st ventral segment longer C'ioide.
- Tarsi hilobed, cavities open, 1st segment longer. Endomychide.

17. Claws simple. 18
Claws dentate, 4 th joint of tarsi small. Phatucrider.
18. Antenne 10-jointed, cavities closed Rhizophagide. Antemæ 11-jointed. 19
19. Tarsi deeply bilobed, maxillary palpi securiform.
Erotylida. Tarsi lobed beneath, 4th joint smaller. Telmatophilida.
Tarsi simple.
Tarsi simple. 20 20
20. Antennæ moniliform, segments equal Cucujide.
Anteunæ clavate, 1st segment elongate. 21
21. Anterior coxal cavities open. Atomariede.
Anterior cavities closed. Bitomide.
22. Tarsi 4 jointed. Colydiidu.
Tarsi 5-jointed, coxe all distant. Elmide.24. Ventral segments 1-3 connate25
Ventral segments free. 28
23. Hind coxæ sub-contiguous. 26
Hind coxe separated. Elmide.
24. Tarsi 4 -jointed, legs fossorial Heteroceride.
Tarsi 5-jointed, hind coxe sulcate. $2 i$
2\%. Ventral segments 6-7, anteunæ filiform Psephenidu.
Ventral segments $\overline{5}$, legs retractile. Cistelitce.
Ventral segments 5 , antenne irregular Prernide.
25. Tarsi 3-jointed, elytra short, truncate. Micropeplide.
Tarsi 4-jointed, antenne 9-jointed Georysside.
Tarsi 4-jointed, claws dentate. Coccinellide.
Tarsi 5 -jointed, antenne 10 -jointed. Rhizophagidre.
Tarsi 5 -jointed, antennæ 11-jointed 29
26. Hind coxæ sub-quadrate, not reaching the margin, elytra trucate, 2 dorsal segments corneous. Misteride.
Hind coxie transverse reaching the margin. 30
27. Tarsi generally dilated, 4th joint small. Nitidulide.
Tarsi simple, 1st joint short. Trogositicle.The family Othniode is referred as a distinct family to the Heterameranear Lagriide.

Hydrophilide.

Anterior coxæ prominent, couical, sub-contiguous, cavities open or closed.

Posterior coxæ flat, nearly contiguous, reaching the margin.
Ventral segments 5 (occasionally $\mathfrak{7}$).
Tarsi 5-jointed, posterior legs often fimbriate, claws geuerally dilate at base. Evidently allied to Silphidee by the coxæ and increased number of segments in some species ; the mentum is large, quadrate, labial palpi distant at base, maxillary palpi elongate; antennæ 6-9 jointed, side pieces of mesosternum not divided.

Leptinid.e.

Anterior coxe oval, not prominent, cavities open, no trochantin.
Posterior coxæ flat.
Veutral seginents 6 .
Tarsi $\check{0}$-jointed, 4th oblique beneath, with a brush of hairs.

This family was founded by Dr. Leconte in the Proceedings of the Academy of Natural Sciences for 1866, and is very evidently distinct. The anterior angles of the thorax projecting under the head separate it superficially from all other Coleoptera; the regular antenme and not prominent coxe separate it from IHydrophilide, to which it is allied by the mentum being large and peculiar.

Platypsyllidee.

This extremely anomalous insect has been formed into a separate family near Leptinus by Dr. Leconte.

SPRARIDAE

Anterior coxa prominent exserted, contiguous, cavities open.
Posterior coxæ large, laminate, contiguous.
Ventral segments 3.
Tarsi 3-jointed.
Wings ciliate as in Trichopteryx, but remarkably distinct by the 3 ventral segments and facies. This family is sub-aquatic in habits, and recalls C'Hetarthria in facies.

Trichopterygide.

Anterior coxæ prominent, contiguous, cavities open or closed.
Pusterior coxe transverse, separate.
Ventral segment 6-7.
Tarsi : 3 -jointed.
Wings fringed with ciliæ. This family contains the suallest known Coleoptera, and is fairly uniform ; the most remarkable form is Limuludes. Mr. Matthews in his wonderful monograph has shown as I think conclusively, that this family comes in between Hydrophitide and stuphylinide, with an additional alliance in Leptinus.

Staplyyinide.

Anterior coxe prominent, contiguous, cavities open (excent some Piestidit).
Posterior coxe contiguous.
Ventral segments $\mathfrak{i}-8$, dorsal segments corneons, flexible.
Tarsi variable.
This large family is rendered tolerably homogeneous by the removal of Micropeplus, still the Piestide with an entirely corneous prosternum and globose anterior coxe seem to me to be anomalous, and approach rather closely to the C'ucujider, but I have not lad the opportunity of studying Ino or ILemipeplus.

Pselaphide.

Anterior coxe conical, prominent, contiguous, cavities open.
Posterior coxe usually separate.
Ventral segments $\overline{5}-6$, dorsal segments corneous.
Tarsi 3-jointed, claws often unequal or single.
Elytra truncate, palpi often largely developed. This family is very ummistakeable, and is evidently a very degraded form. Eyes coarsely granulated or wanting.

Sil. Phide.

Anterior coxæ conical, prominent, contignous, cavities usually open.
Posterior coxæ transverse contiguous.
Ventral segments 6.
Tarsi variable.
This family appears to me probably composite; but I have not yet been able to differentiate all its sub-divisions. Spharites has only 5 ventral segments, with truncate elytra. Leptodirus cannot remain here, with distant posterior coxæ; Catops has the anterior coxal cavities more or less closed ; Anisitome also has the cavities closed, though the epimera are not united to the prosternum. Clambus is probably a family, and also Leptodirus. It differs from the other families with contiguous coxat hy the presence of a trochanter.

Brathinide.

Anterior coxæ large, conical, prominent contiguons, cavities closed.
Middle coxat also conical, prominent, contiguous.
Posterior coxæ transverse prominent, contiguous.
Ventral segments 6.
Tarsi $\check{\text {-jointed, simple. }}$
Form of Scydmenus but differing by the middle and posterior coxa, and evidently forming a distinct family.

Scydmenide.
Auterior coxæ conical, prominent contiguous, cavities open.
Pusterior coxæ conical, distant.
Ventral segments 6.
Tarsi 5 -jointed.
Eyes coarsely granulated. This family has a well defined facies.
Cortlophide.
Anterior coxæ ovate prominent, contiguons, cavities open, no trochanter.

Posterior coxx distant.
Ventral segments 6.
Tarsi 4-jointed, and 3d very minute.
Wings fimbriate as in Trichoptery.x, thorax generally produced over the head, elytra sometimes trumeate behind. United by Erichson with Coccinella, from which it differs by the coxæ and simple.claws.

Scaphidilde.

Anterior coxe large, prominent contignons, cavities open.
Posterior coxre distant.
Ventral segments 6.
Tarsi J-jointed, filiform.
Elytra truncate, 3 or 4 dorsal segments corneous; 5th ventral segment large. A small well defined family.
A. P. S.-VOL. XIII. K

Latrinild.e.

Anterior cosie conical, prominent separate, cavities closed.
Tentral segments \bar{j}, free, sub-equal.
Tarsi 3-jointed, simple, tibiae without spurs.
Allied apparently to Silphide by the anterior coxa; separable from its allies by the 3 -jointed tarsi.

DERODONTLDE.

Anterior coxa conical, prominent, snb-transverse, contiguous, cavities closed.

Posterior coxe transverse, dilated internally, protecting the thigh.
Ventral segments \bar{y}, free, equal.
Tarsi \tilde{j}-jointed, 4 th is somewhat smaller.
Eyes finely granulated.
Separated by Leconte from Latridiada with obvious propriety. I have provisionally placed the anomalous genus Peltestica in this family, it dorees in all essential characters, and it differs only in facies. The European genus Phloophilus belongs here also, but has the coxal cavities .) pen.

DERMESTIDE.

Antcrior coxæ conical, prominent, cavities open.
Posterior coxa transversc, dilated internally to protect the thighs.
Ventral segments 5 , free, equal.
Tarsi 5-jointed, tibiæe with spurs.
Front usually with an ocellus.
This family (excluding Trixugus) is very homogeneous ; the prominent eoxe and free ventral segments show that it must come near Silphide; the majority of genera are at once known by the frontal ocellus.

Exdomychid.E.

Anterior coxæ glokose, or conical, sometimes contignous, more or less prominent, eavities open.

Ventral segments 5, first very long.
Tarsi 4-jointed, $2 d$ emarginate, 3d hilden.
Differs from Mycetophugide by the bilobed tarsi and the long 1st ventral segment. Gerstaecker and Thomson rightly include Mycetou in this family, though the tarsi simmlate closely those of Mycotophogider; the contignous sub-conical coxe show that its place is at this cud of the series.

Tripilyllide.

Antcrior coxa oval, prominent, cavities open.
Ventral segments 5 , equal.
Tarsi 4-jointed (s 3, 4, 4), filiform.
Eyes coarsely granmated.
Leconte has included Diphyllus, which I have removed to a separate family. Thomson adds Tetrutomn, in which I think he is very possibly right; certainly I do not see that genms belongs to the IIetcromerons
series. Geoffrony's name Tritoma must be restored to the typical genus Mycetophagus, hence I have altered the family name.

Ciolde.

Anterior coxa oval, not prominent, cavities closed.
Ventral segments 5 , 1st elongate.
Tarsi 4-jointed, spurs not distinct.
Antennæ 8-10-jointed.
This family cannot belong in the Serricornes, which all have the coxal cavities open; it appears to me to form a distinct family near Cryptophugide and Mycetophayide, and this view is confirmed by the larve. It differs from the Bostrychide by the coarsely granulated eyes and distinct epipleure continnous to the apex of the elytra. Endecutomus as remarked by Leconte is an ordinary Bostrychid.

Erotylide.

Anterior coxæ globose, separate, cavities generally closed.
Posterior coxa transverse, not reaching the margin.
Ventral segments 5 , 1st elongate.
Tarsi 5 -jointed, $3 d$ emarginate above for the 4 th, which is very minnte.
The coxal cavities are open in Languria which otherwise accords. The 4th joint of the tarsi becomes less minute in Dacne and Combocerus.

It is evident that this family must come near Cryptophagide where Thomsonand Bedel place it. It has no sort of affinity with Chrysomelide. The strongly securiform maxillary palpi render most of the genera very distinct.

Atomaridee.

Anterior coxie small, globose, or oval, separate, cavities variable.
Ventral segments 5 , equal, or with the 1st longer.
Tarsi 5 -jointed (5 sometimes 5, 5, 4), tibiæ with small spurs.
In this family I have inchded numerons apparently discordant elements, but which I have entirely failed to separate into distinct families. The tarsi are generally linear, lobed beneath in Telmutophilus, 4th joint smaller in Silomus, Psommucus, Biphyllus, etc.; the antennæ are 11jointed and moniliform in Cucujus, generally with 3 -jointed club in the rest. The basal joint of the tarsi is very short in Cucujus, long however in Scalitia and most others. The length of the ventral segments is also entirely uncertain. Cucujus shows an evident affinity to Trogosita as seen already by Thomson.

Monotomid.e.

Anterior coxz small, rounded, separate, cavities closed.
Tentral segments 5; 1 and j elongate.
Tarsi 5 -jointed, 4th narrower, 5 th elongate.
Elytra truncate, last dorsal sezment visible, eyes strongly granulated, auteume 10 -jointed, club abrupt.

This family was founded by Leconte, and as I think, with reason. The structure of the antenne, the 6th dorsal segment in the σ^{7} and the facies
all show great affinity to Rhizophagus, from which the anterior coxe at once seprate it. Thomson has placed them in Latriditde, which the 5 jointed tarsi prevent; Duval with the Cucujider on account of the short 1 st joint of the tarsi. The raised line on the 1st ventral segment and the structure of the head show a close affinity to Silvanus.

Bitomide.

Anterior coxæ rounded, cavities closed.
Ventral segments 5 , 1 st elongate.
Tarsi 5 -jointed, 1 st joint extremely minute.
This family was formed by Duval, who included Endecutomus, which is however a true Bostrychide as shown by Leconte ; Thomson has left Lyctus also in Bostrychidc, but it agrees in all essentials with Colydiulde and Cucujide, having a close affinity to the latter by the short 1st joint of the tarsi. The name Lyctus was first used for this genus by Latreille in 1807, but Herbst had previonsly indicated it and in the name Bitoma in 1794. Wollaston dissected this genus carefully in 1854, and considered it a Colydiid, regarding the basal articulation as merely a swelling ; it appears to me certainly very close to Colyditude by the structure of the prosternum, the elub, and the obsolete elytra epipleure, but the basal joint is visible is some species.

Colydidee.

Anterior coxæ small, globular, cavities generally closed.
Posterior coxe sometimes contiguous, transverse.
Ventral segments 5, 1-3 or 1-4 connate; 1st often elongate.
Tarsi 4-jointed, simple.
Antennæ often capitate, form cylindrical, or depressed and with gradually clavate anteunæ. Eyes coarsely gramulated. The prosternal structure in Bothriteres resemble that of Brenthus and also of Rhyssodes. Myrmecoxenus must be placed here according to Thomson, having the 4jointed tarsi and connate segments, but he also adds Silvanus, in which I cannot concur. He breaks the family up into three, Bothrideridur, Colydidde, Synchitide. Murmitius if not a separate family ean only go here; the globose anterior coxe and 4th-jointed tarsi would seem to agree very well. After examining Discoloma and other genera, it is evident that Cossyphus can only go here (or in a separate family next to it, eharacterized by the heteromerous tarsi).

Rhizopiagide.

Anterior coxæ ovate or rounded, cavities generally transverse, always closed.

Posterior coxæ transverse.
Ventral segments 5, 1st elongate, of with coxal lines.
Tarsi $\overline{\text {-jointed, }}$, often dilated.
Antennæ 10-iointed, 11 th joint connate with the preceding.
This family isi dentical with Monotomidue, etc., except that I have added

Rhizophagus; it thus makes a very natural family with a distinct facies, and identical structure. The coxal cavities vary from transverse to rounded by imperceptible degrees.

Trogositide.

Anterior coxæ transverse, separate, cavities variable.
Posterior coxæ transverse reaching the margin.
Ventral segments \bar{y}, equal.
Tarsi 5-jointed, not dilated.
Peltastica, placed provisionally here by Leconte, I have removed to Derodontide. This family contains two very different types; the elongate narrow Trogosita placed by Thomson near Cucujus on account of the very minute 1st tarsal joint and less transverse cavities; and the broad species of Ostoma (Peltis) which are like Nitidula, except that the tarsi are not dilated.

Nitidelid.e.

Anterior coxæ transverse, cavities generally closed.
Pusterior coxæ distant, almost reaching the margin.
Ventral segments 5 .
Tarsi 5 -jointed, dilated, 4 th joint small, claws sometimes dentate.
The capitate antennæ are generally characteristic of this group ; the coxal cavities are open in Cychramus, Ips., etc. ; Byturus is better here by the dentate claws than in Dermestide, though the lobed tarsi are distinctly anomalous; Kieseuwetter and Thomson place it here; Duval places it with Telmatophilus, which seems impossible. Rhizophagus is excluded by Murray, but is. osculant between this family and Trognsitider. The small genera Hesperobcnur, Bactridium, Europs and Nomophleus must come here as the cavities are made precise, as in Rhizophagus; Phyconomus also has dilated tarsi.

Micropeplide.

Anterior coxæ transvere, cavities closed.
Posterior cosæ distant, rounded.
Ventral segments 6 .
Tarsi 3-jointed.
Antenns 9-jointed, with an abrupt club, received into thoracic cavities. Elytra truncate, short.
This family is very anomalous, but its whole relationship is with Vitidulidc, having no character in common with Staphylinidue except the short elytra. The discovery of the larva also confirms this view.

Phalacride.

Anterior coxæ small, globose, separate, cavities open.
Posterior coxæ contiguous, not reaching the margin.
Tarsi 5 -jointed, 4th very small, claws dentate.
Allied to Nitidulide by the claws and tarsi, but differing by the anterior and posterior coxæ, it must, however, evidently be placed next them.

Corcinellide.

Anterior coxæe transverse, cavities generally closed.
Posterior coxæ distant, not reaching the margin, sometimes suleate.
Ventral segments 5-6 (7 in Hyperaspis \mathbf{o}^{7}).
Tarsi 4-jointed, 21 bilobed, $3 d$ very minute, claws generally dentate.
The structure of the tarsi has generally caused these insects to be placed at the end of the order, but they evidently belong in the Claxicorn series, from all other families of which they differ by their tarsi, combined with securiform palpi, generally dentate claws and usually closed eavities. The only other family with similar tarsi is the Endomychitce, which has small globose anterior coxa, with open eavities and simple claws. It is, however, to be noticed that the elongate aberrant Coccidula has sub-globose anterior coxie. The coxe are often sulcate as in Cistelidu.

Cistelide.

Anterior coxæ transverse, eavities open.
Posterior coxæ sub-contignous, reaehing the margin.
Ventral segments 5, 1-3 sub-comnate.
Tarsi 5 -jointed, often lobed beneath.
Antennæ gradually clavate, legs retractile, lind coxæ sulcate.
This family is very distinet by its facies. Chelonarium may form a separate family, the antenue are entirely filiform. I have reverted here, as elsewhere, to Geoffrony's name for the typieal genus (1762) ; the name Byrrhus belongs to the Anobium, Fabr., and the Byrrhus of Limmeus is Anthrenus, Geoff. By means of Liminichus this family is elosely allied to Georyssus and Elmis.

Georysside.
Anterior coxæ compressed, trochanters large, covering the prosternum, cavities open.

Posterior coxæ distant.
Ventral segments 5 , 1st very large, 1-2 connate.
Tarsi 4-jointed, antenne 9-jointed.
Allied to Cistelide (Byrrhides) by the general habit; distinct.

Psephenide.

Anterior coxa globular, eavities open, prolongel externally, trochanter very large.

Posterior coxæ dilated into a plate, contignous.
Veutral segments $6-7,1-2$ connate.
Tarsi 5-jointer.
Maxillary palpi very long, securiform, antemme long, filiform. This inseet is most singular and anomalous; notwithstanding the evident affinity to Parnide it differs remarkally from it by the elougate palpi and 6 ventral segments. The ith ventral segment is visible ouly in the δ. It is in many respects closely allied to Helodes in the Servicornes. This family is the commencement of a small group of elosely allied families, differing in the details of the coxie, but agreeing remarkably in the parts of the month.

Parcide.

Anterior coxæ transverse, cavities open, trochanter distinct,
Posterior cose dilated into a plate, contiguons.
Ventral segments 5, 1-3 commate.
Tarsi 5-jointed.
Antenne short irregular, as in the Gyrinide, to which this family is evidently allied, though differing remarkably in the form of the coxa. Leconte's two sub-families entirely destroy the homogeneity of this family and are made into separate families.

Elmide.

Anterior coxæ small, rounded, without trochanter, cavities open.
Posterior coxe transverse, distant.
Ventral segments 5, 1-3 connate.
Tarsi $\overline{5}$-joined, $\overline{\text { oth }}$ elongate.
Allied to Parnidu by mode of life, and more or less by the appearance of the larvæ; but remarkably distinct structurally. Antennæ shont. hardly sub-elavate. The tarsal structure is very like Mydrochus but the broadly distant coxæ entirely remove it.

Heteroceride.

Anterior coxæ transverse, cavities open.
Postcriol coxæ sub-contiguous.
Tentral segments 5, 1-3 connate.
Tarsi 4-jointed.
Antenne 10-11-jointed short, irregular. Evidently allied to Pernida, but with a very characteristic facies.

Histeride.

Anterior coxa transverse, cavities open.
Posterior coxa distant, sub-quadrate, not reaching the margins.
Tentral segments $\overline{5}$, 1st very large.
Tarsi 5 -jointed (Acritus 5, 5, 4), legs retractile.
Differs from the other families by the geniculate antenne, with a compact rounded club; elytra truncate, 2 dorsal segments uncovercd, corneous. Murmidius, placed here by Dr. Leconte, seems to me certain] an aberrant form of Colydiide.
The two families of Lamellicornes are easily distinguished. The Serricom series also is well arranged by Leconte. The Tetramera include only :? families, Cerambycide, Bruchide, Chrysomelide, and their limits are lard to define. The Heteromera have leen divided by Leconte into convenient families; possibly Lagria and Allecula (Cisteli shonld go in Tenebrionide and certainly Vilio slonld go with Pythide, bearing as Dr. Horn has suggested to me, the same relation to it as Thymalus does to Trogositide. The Rhynchophorus families are still doubtful, probably there are only three, Anthribide, Cureulionide and Scolytida.

